UChicago News
Imaginary numbers are a solution to a very real problem, according to a new study published in Scientific Reports.Two physicists at Argonne National Laboratory offered a way to mathematically describe a particular physics phenomenon called a phase transition in a system out of equilibrium. Such phenomena are central in physics, and understanding how they occur has been a long-held and vexing goal; their behavior and related effects are key to unlocking possibilities for new electronics and other next-generation technologies.
In physics, “equilibrium” refers to a state when an object is not in motion and has no energy flowing through it. As you might expect, most of our lives take place outside this state: we are constantly moving and causing other things to move.
“A rainstorm, this rotating fan, these systems are all out of equilibrium,” said study co-author of the Valerii Vinokur, an Argonne distinguished fellow and member of the Computation Institute at the University of Chicago. “When a system is in equilibrium, we know that it is always at its lowest possible energy configuration, but for non-equilibrium this fundamental principle does not work; and our ability to describe the physics of such systems is very limited.”
He and co-author Alexey Galda, a scientist with Argonne and the University of Chicago’s James Franck Institute, had been working on ways to describe these systems, particularly those undergoing a phase transition—such as the moment during a thunderstorm when the charge difference between cloud and ground tips too high, and a lightning strike occurs.
They found their new approach to non-equilibrium physics in a new branch of quantum mechanics. In the language of quantum mechanics, the energy of a system is represented by what is called a Hamiltonian operator. Traditionally, quantum mechanics had held that the operator to represent the system cannot contain imaginary numbers if it would mean the ...
Read More
Saturday, April 29, 2017
Imaginary numbers present real solution to vexing physics problem
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.