Vanderbilt News
by David Salisbury | Jul. 21, 2017, 9:19 AM | Want more research news? Subscribe to our weekly newsletter »
SHARELINES TweetElectrifying human motion
[embedded content]
Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting down.
A new, ultrathin energy harvesting system developed at Vanderbilt University’s Nanomaterials and Energy Devices Laboratory has the potential to do just that. Based on battery technology and made from layers of black phosphorus that are only a few atoms thick, the new device generates small amounts of electricity when it is bent or pressed even at the extremely low frequencies characteristic of human motion.
Transmission electron microscope image showing the ultrathin layers of black phosphorus used in the energy harvesting device An angstrom (Å) is about the width of a single atom and is one tenth of a nanometer (nm). (Nanomaterials and Energy Devices Laboratory / Vanderbilt)
“In the future, I expect that we will all become charging depots for our personal devices by pulling energy directly from our motions and the environment,” said Assistant Professor of Mechanical Engineering Cary Pint, who directed the research.
The new energy harvesting system is described in a paper titled “Ultralow Frequency Electrochemical Mechanical Strain Energy Harvester using 2D Black Phosphorus Nanosheets” published XXX online by the journal ACS Energy Letters.
“This is timely and exciting research given the growth of wearable devices such as exoskeletons and smart clothing, which could potentially benefit from Dr. Pint’s advances in materials and energy harvesting,” observed Karl Zelik, assistant professor of mechanical and biomedical engineering at Vanderbilt, an expert on the biomechanics of locomotion who did not participate in the device’s development.
Graduate student Kathleen Moyer holds up the guts of the ultrathin energy harvesting device in a glove box. It is so thin ...
Read More
Friday, July 21, 2017
Ultrathin device harvests electricity from human motion
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.