Tuesday, March 21, 2017

Altering pH bumps prions out of danger zone

MSUToday - Featured stories Prion diseases are scary, incurable and fatal. They first gained notoriety when cows became infected by prion proteins and, in turn, infected people. Fervor surrounding mad cow disease resulted in the U.S. banning imports of beef from the European Union for 15 years.  
New research led by Michigan State University and published in the current issue of the Proceedings of the National Academy of Sciences, offers hope by showing how we might prevent prions from aggregating or growing into deadly diseases. The results also show that an antihistamine, astemizole, proved effective in reducing prion aggregation.
Lisa Lapidus, MSU professor of physics and astronomy, has pioneered a laser technique to advance her medical discoveries. The two-laser approach measures the speed at which proteins rearrange before beginning to clump, or aggregate – the critical beginning of many neurodegenerative diseases.
“While prion’s transmission method is quite unusual, the process of protein clumping is quite common in a number of diseases, such as Alzheimer’s and Parkinson’s disease,” said Lapidus, who published the paper with Kinshuk Raj Srivastava, former postdoctoral fellow at MSU. “We’ve discovered that there is a ‘dangerous middle range,’ a speed that individual proteins rearrange in which clumping happens fastest. We were also able to find a way to bump the proteins out of the danger zone and reduce the chances of clumping from happening.”
Bumping proteins out of the danger zone could help advance research on prion diseases, such as fatal familial insomnia and kuru in humans, mad cow disease, and chronic wasting disease in deer.
What these prion diseases have in common, the team discovered, is the key speed changer of pH. Using the protein from a hamster, a mammal with a history of suffering from prion diseases, the team found that prion-related protein chains reconfigure slowly at neutral pH, thus avoiding the sticky middle speeds.
However, ...


Read more

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.