Wednesday, April 26, 2017

Georgia Tech Researcher Honored with Alan T. Waterman Award

Science and Technology

Science and Technology

Georgia Tech Researcher Honored with Alan T. Waterman Award


Award recognizes innovation with carbon nanotube technologies




By
John Toon | April 13, 2017
• Atlanta, GA








[embedded content]

The National Science Foundation (NSF) has recognized Baratunde "Bara" A. Cola of the Georgia Institute of Technology and John V. Pardon of Princeton University with the nation's highest honor for early career scientists and engineers, the Alan T. Waterman Award. This marks only the second time in the award's 42-year history that NSF selected two recipients in the same year. (Credit: National Science Foundation)

The National Science Foundation (NSF) has recognized Baratunde "Bara" A. Cola of the Georgia Institute of Technology and John V. Pardon of Princeton University with the nation's highest honor for early career scientists and engineers, the Alan T. Waterman Award. This marks only the second time in the award's 42-year history that NSF selected two recipients in the same year.

Bestowed annually, the Waterman Award recognizes outstanding researchers age 35 and under in NSF-supported fields of science and engineering. In addition to a medal, awardees each receive a $1 million, five-year grant for research in their chosen field of study.

"We are seeing the significant impact of their research very early in the careers of these awardees," said NSF Director France Córdova. "That is the most exciting aspect of the Waterman Award, which recognizes early career achievement. They have creatively tackled longstanding scientific challenges, and we look forward to what they will do next."

Cola pioneered new engineering methods and materials to control light and heat in electronics at the nanoscale. He serves as an associate professor at Georgia Tech's George W. Woodruff School of Mechanical Engineering.

In 2015, Cola and his team were the first to overcome more than 40 years of research challenges to create a device called an optical rectenna, which turns light into direct current more efficiently than today's ...

Read More

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.