Science and Technology
Science and Technology
Landslides on Ceres Reflect Hidden Ice
By
Jason Maderer | April 17, 2017
• Atlanta, GA
Click image to enlarge
Type II features are the most common of Ceres’ landslides and look similar to deposits left by avalanches on Earth. This one also looks similar to TV's Bart Simpson. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA, taken by Dawn Framing Camera
Massive landslides, similar to those found on Earth, are occurring on the asteroid Ceres. That’s according to a new study led by the Georgia Institute of Technology, adding to the growing evidence that Ceres retains a significant amount of water ice.The study is published in the journal Nature Geoscience. It used data from NASA’s Dawn spacecraft to identify three different types of landslides, or flow features, on the Texas-sized asteroid.
Type I are relatively round, large and have thick "toes" at their ends. They look similar to rock glaciers and icy landslides in Earth’s arctic. Type I landslides are mostly found at high latitudes, which is also where the most ice is thought to reside near Ceres' surface.
Type II features are the most common of Ceres’ landslides and look similar to deposits left by avalanches on Earth. They are thinner and longer than Type I and found at mid-latitudes. The authors affectionately call one such Type II landslide "Bart" because of its resemblance to the elongated head of Bart Simpson from TV's "The Simpsons."
Ceres' Type III features appear to form when some of the ice is melted during impact events. These landslides at low latitudes are always found coming from large-impact craters.
Georgia Tech Assistant Professor and Dawn Science Team Associate Britney Schmidt led the study. She believes it provides more proof that the asteroid’s shallow subsurface is a mixture of rock and ice.
“Landslides cover more area in the poles than at ...
Read More
Sunday, April 23, 2017
Landslides on Ceres Reflect Hidden Ice
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.